Publications

  1. Guaranteed resonance enclosures and exclosures for atoms and molecules 
    S. Bögli, B. M. Brown, M. Marletta, C. Tretter, and M. Wagenhofer, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng Sci. 470 (2014), 17 pp.
    (doi:10.1098/rspa.2014.0488)
  2. Remarks on the convergence of pseudospectra
    S. Bögli and P. Siegl, Integral Equations Operator Theory 80 (2014), pp. 303-321
    (doi:10.1007/s00020-014-2178-1, arXiv:1408.3431 [math.SP])
  3. Schrödinger operator with non-zero accumulation points of complex eigenvalues
    S. Bögli, Comm. Math. Phys. 352 (2017), pp. 629-639
    (doi:
    10.1007/s00220-016-2806-5, arXiv:1605.09356 [math.SP])
  4. Approximations of spectra of Schrödinger operators with complex potentials on R^d
    S. Bögli, P. Siegl, and C. Tretter, Comm. Part. Diff. Eq. 42, pp. 1001-1041
    (doi:10.1080/03605302.2017.1330342, arXiv:1512.01826 [math.SP])
  5. Convergence of sequences of linear operators and their spectra
    S. Bögli, Integral Equations Operator Theory 88 (2017), pp. 559-599 (doi:10.1007/s00020-017-2389-3, arXiv:1604.07732 [math.SP])
  6. Local convergence of spectra and pseudospectra
    S. Bögli,  Journal of Spectral Theory 8 (2018), pp. 1051–1098
    (doi:10.4171/JST/222, arXiv:1605.01041 [math.SP])
  7. The essential numerical range for unbounded linear operators
    S. Bögli, M. Marletta, C. Tretter, Journal of Functional Analysis 108509 (2020)

    (doi:10.1016/j.jfa.2020.108509, arXiv:1907.09599 [math.SP])
  8. Essential numerical ranges for linear operator pencils
    S. Bögli, M. Marletta, IMA Journal of Numerical Analysis (2020)

    (doi:10.1093/imanum/drz049, arXiv:1909.01301 [math.SP])
  9. Eigenvalues of Magnetohydrodynamic Mean-Field Dynamo Models: Bounds and Reliable Computation.
    S. Bögli, C. Tretter, SIAM Journal on Applied Mathematics 80 (2020), pp. 2194-2225.
    (doi:10.1137/19m1286359)
  10. On Lieb-Thirring inequalities for one-dimensional non-self-adjoint Jacobi and Schrödinger operators
    S. Bögli, F. Stampach, Journal of Spectral Theory 11, pp. 1391-1413.

    (doi:10.4171/jst/378 , arXiv:2004.09794 [math.SP])
  11. On the eigenvalues of the Robin Laplacian with a complex parameter
    S. Bögli, J. B. Kennedy, R. Lang, Analysis and Mathematical Physics, 12 (2022)

    (doi:10.1007/s13324-022-00646-0, arXiv:1908.06041 [math.SP])
  12. A Spectral Theorem for the Semigroup Generated by a Class of Infinitely Many Master Equations.
    S. Bögli, P. Vuillermot, Acta Applicandae Mathematicae 178 (2022).
    (doi:10.1007/s10440-022-00478-x)
  13. On the asymptotic behavior of solutions to a class of grand canonical master equations.
    S. Bögli, P. Vuillermot, Portugaliae Mathematica 80 (2023), pp. 269-289.
    (doi:10.4171/pm/2102)
  14. Spectral analysis and domain truncation for Maxwell’s equations.
    S. Bögli, F. Ferraresso, M. Marletta, C. Tretter, Journal de Mathématiques Pures et Appliquées 170 (2023), pp. 96-135.
    (doi:10.1016/j.matpur.2022.12.004)
  15. Counterexample to the Laptev-Safronov Conjecture.
    S. Bögli, J.-C. Cuenin, Communications in Mathematical Physics 398 (2023), pp. 1349-1370.
    (doi:10.1007/s00220-022-04546-z)
  16. Improved Lieb-Thirring type inequalities for non-selfadjoint Schrödinger operators.
    S. Bögli, From Complex Analysis to Operator Theory: A Panorama In Memory of Sergey Naboko (2023), pp. 151-161. Birkhäuser-Springer.
    (doi:10.1007/978-3-031-31139-0_9)
fish100pdf
Eigenvalues (blue dots) and pseudospectra (different shades of grey) of a compactly perturbed Toeplitz operator (symbol curve in red), approximation by truncating infinite matrix to finite sections. Taken from publication 6.